Litter dominates surface fluxes of carbonyl sulfide in a Californian oak woodland

نویسندگان

  • Wu Sun
  • Kadmiel Maseyk
  • Céline Lett
  • Ulli Seibt
چکیده

Carbonyl sulfide (COS) is a promising tracer for partitioning terrestrial photosynthesis and respiration from net carbon fluxes, based on its daytime co-uptake alongside CO2 through leaf stomata. Because ecosystem COS fluxes are the sum of plant and soil fluxes, using COS as a photosynthesis tracer requires accurate knowledge of soil COS fluxes. At an oak woodland in Southern California, we monitored below-canopy surface (soil + litter) COS and CO2 fluxes for 40 days using chambers and laser spectroscopy. We also measured litter fluxes separately and used a depth-resolved diffusion-reaction model to quantify the role of litter uptake in surface COS fluxes. Soil and litter were primarily COS sinks, and mean surface COS uptake was small (∼1 pmol m−2 s−1). After rainfall, uptake rates were higher (6–8 pmol m−2 s−1), and litter contributed a significant fraction (up to 90%) to surface fluxes. We observed rapid concurrent increases in COS uptake and CO2 efflux following the onset of rain. The patterns were similar to the Birch effect widely documented for soils; however, both COS and CO2 flux increases originated mainly in the litter. The synchronous COS-CO2 litter Birch effect indicates that it results from a rapid increase in litter microbial activity after rainfall. We expect that the drying-rewetting cycles typical for mediterranean and other semiarid ecosystems create a pronounced seasonality in surface COS fluxes. Our results highlight that litter uptake is an important component of surface COS exchange that needs to be taken into account in ecosystem COS budgets and model simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A soil diffusion–reaction model for surface COS flux: COSSM v1

Soil exchange of carbonyl sulfide (COS) is the second largest COS flux in terrestrial ecosystems. A novel application of COS is the separation of gross primary productivity (GPP) from concomitant respiration. This method requires that soil COS exchange is relatively small and can be well quantified. Existing models for soil COS flux have incorporated empirical temperature and moisture functions...

متن کامل

Airborne Flux Measurements of BVOCs above Californian Oak Forests: Experimental Investigation of Surface and Entrainment Fluxes, OH Densities, and Damk€ ohler Numbers

Airborne flux measurements of isoprene were performed over the Californian oak belts surrounding the Central Valley. The authors demonstrate for the first time 1) the feasibility of airborne eddy covariance measurements of reactive biogenic volatile organic compounds; 2) the effect of chemistry on the vertical transport of reactive species, such as isoprene; and 3) the applicability of wavelet ...

متن کامل

Impacts of Forest-Based Activities on Woodland Characteristics

The purpose of this study was to investigate the impacts of forest-based activities on the conditions of the Ganaveh woodland in the southern Zagros, Iran, and to suggest strategies for improving the implementation of forest resource management plans. Woodland inventory data was gathered in 2003, accompanied with data from interviews in 2008, were used in this study. The results show that there...

متن کامل

Carbonyl sulfide and dimethyl sulfide fluxes in an urban lawn and adjacent bare soil in Guangzhou, China.

Carbonyl sulfide (COS) and dimethyl sulfide (DMS) fluxes from an urban Cynodon dactylon lawn and adjacent bare soil were measured during April-July 2005 in Guangzhou, China. Both the lawn and bare soil acted as sinks for COS and sources for DMS. The mean fluxes of COS and DMS in the lawn (-19.27 and 18.16 pmol/(m2 sec), respectively) were significantly higher than those in the bare soil (-9.89 ...

متن کامل

Seasonal fluxes of carbonyl sulfide in a midlatitude forest.

Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016